abego TreeLayout

Efficiently create compact, highly customizable tree layouts.

Introduction

The TreeLayout creates tree layouts for arbitrary trees. It is not restricted to a specific output or format, but can be used for any kind of two
dimensional diagram. Examples are Swing based components, SVG files, and many more. This is possible because TreeLayout separates the
layout of a tree from the actual rendering.

To use the TreeLayout you mainly need to supply an instance of the TreeLayout class with the nodes of the tree (including "children" links),
together with the "size" of each node. In addition you can configure the layout by specifying parameters like "gap between levels" etc..

Based on this information TreeLayout creates a compact, nice looking layout. The layout has the following properties [2]:

. The layout displays the hierarchical structure of the tree, i.e. the y-coordinate of a node is given by its level. (*)

. The edges do not cross each other and nodes on the same level have a minimal horizontal distance.

. The drawing of a subtree does not depend on its position in the tree, i.e. isomorphic subtrees are drawn identically up to translation.
. The order of the children of a node is displayed in the drawing.

. The algorithm works symmetrically, i.e. the drawing of the reflection of a tree is the reflected drawing of the original tree.

DA W =

(*) When the root is at the left or right (see "Root Location") the x-coordinate of a node is given by its level

Here an example tree layout:

/I—<II

Usage

To use the TreeLayout you will create a TreeLayout instance with:

e atree, accessible through the TreeForTreeLayout interface,
® a NodeExtentProvider, and

® acConfiguration.

Using these objects the TreeLayout will then calculate the layout and provide the result through the method getNodeBounds.

TreeForTreeLayout

The TreeLayout works on any kind of tree and uses the TreeForTreeLayout interface to access such a tree.

To use the TreeLayout you therefore need to provide it with a TreeForTreeLayout implementation. In most situations you will not need to deal
with all details of that interface, but create an implementation by extending AbstractTreeForTreeLayout, Or even use the class
DefaultTreeForTreeLayout directly.

Example: Extending AbstractTreeForTreeLayout

Assume you have a tree consisting of nodes of type StringTreeNode:

StringTreeNode
getParent() : StringTreeNode
getChildren() : List<StringTreeNode>
getText() : String

As StringTreeNode provides the children in a list and you can get the parent for each node you can extend AbstractTreeForTreeLayout to
create your TreeForTreeLayout implementation. You only need to implement two methods and the constructor:

public class StringTreeAsTreeForTreelLayout extends

AbstractTreeForTreeLayout<StringTreeNode> {

public StringTreeAsTreeForTreeLayout(StringTreeNode root) {
super (root);

}

public StringTreeNode getParent(StringTreeNode node) {
return node.getParent();

}

public List<StringTreeNode> getChildrenList(StringTreeNode parentNode) {
return parentNode.getChildren();

}

(Make sure to check out the performance constraints of getchildrenList and getParent.)
Example: Using the DefaultTreeForTreeLayout

Assume you want to create a tree with TextInBox items as nodes:

TextlnBox
text : String
width : int
height : int

As you have no own tree implementation yet you may as well use DefaultTreeForTreeLayout to create the tree:

TextInBox root = new TextInBox('"root", 40, 20);

TextInBox nl = new TextInBox('nl", 30, 20);

TextInBox nl_1 = new TextInBox("nl.l\n(first node)", 80, 36);
TextInBox nl_2 = new TextInBox("nl.2", 40, 20);

TextInBox nl_3 = new TextInBox("nl.3\n(last node)", 80, 36);
TextInBox n2 = new TextInBox("'n2", 30, 20);

TextInBox n2_1 = new TextInBox("n2", 30, 20);

DefaultTreeForTreeLayout<TextInBox> tree =
new DefaultTreeForTreeLayout<TextInBox>(root);
tree.addChild(root, nl);
tree.addChild(nl, nl_1);
tree.addChild(nl, nl_2);
tree.addChild(nl, nl_3);
tree.addChild(root, n2);
tree.addChild(n2, n2_1);

This will create a tree like this:

NodeExtentProvider

TreeLayout also needs to know the extent (width and height) of each node in the tree. This information is provided through the
NodeExtentProvider.

If all nodes have the same size you can use a FixedNodeExtentProvider instance with the proper width and height.

In general you will create your own NodeExtentProvider implementation.
Example

Assume you want to create a tree with TextInBox items as nodes:

TextlnBox
text : String
width : int
height : int

Here each node contains its width and height. So your NodeExtentProvider may look like this:

public class TextInBoxNodeExtentProvider implements
NodeExtentProvider<TextInBox> {

@override
public double getWidth(TextInBox treeNode) {
return treeNode.width;

}

@Ooverride
public double getHeight(TextInBox treeNode) {
return treeNode.height;

}
}

Configuration

You can use a Configuration to customize various aspects of the TreeLayout:
the gap between levels,

the minimal gap between nodes,

the position of the root node,
the alignment of smaller nodes within a level.

Most of the times using the Defaultconfiguration class will be sufficient.
Root Position

By default the root of the tree is located at the top of the diagram. However one may also put it at the left, right or bottom of the diagram.

Top (Default) [Left I Right | Bottom

|
L - N
Oo—m |
s Qv |

See getRootlocation.

root

Alignment in Level

By default all nodes of one level are centered in the level. However one may also align them "towards the root" or "away from the root". When
the root is located at the top this means the nodes are aligned "to the top of the level" or "to the bottom of the level".

Center (Default) TowardsRoot ("top of level") ||[AwayFromRoot ("bottom of level")

nl ﬂ n3
(first node) (last node)

nl n3 nl n3
(first node) (last node) (first node) n (last node)

Alignment in level when root is at the left:

TowardsRoot ("left of level")

AwayFromRoot
("right of level")

‘ Center (Default) ‘

nl
(first node)

n3
(last node)

nl
(first node)

n3
(last node)

nl
(first node)

5]
(last node)

Of cause the alignment also works when the root is at the bottom or at the right side.

See getAlignmentInLevel.

Gap between Levels and Nodes

The gap between subsequent levels and the minimal gap between nodes can be configured.

gapBetweenNodes

See getGapBetweenlLevels and getGapBetweenNodes.

Examples

In the "demo" package you will find examples using the TreeLayout.

e SVGDemo - Demonstrates how to use the TreeLayout to create a tree diagram with SVG (Scalable Vector Graphic)
e SwingDemo - Demonstrates how to use the TreeLayout to render a tree in a Swing application

Performance

Based on Walker's algorithm [1] with enhancements suggested by Buchheim, Jiinger, and Leipert [2] the software builds tree layouts in linear
time. L.e. even trees with many nodes are built fast. Other than with the Reingold-Tilford algorithm [3] one is not limited to binary trees.

The following figure show the results running the TreeLayout algorithm on a MacBook Pro 2.4 GHz Intel Core 2 Duo (2 GB Memory (-
Xmx2000m)). The variously sized trees were created randomly.

Performance of TreeLayout on random trees

750

500

Time (milliseconds)

250

0 25000 50000 75000 100000
Number of nodes

The picture illustrates the linear time behavior of the algorithm and shows the applicability also for large number of nodes. In this setting it
takes approx. 5 us to place one node.

License

TreeLayout is distributed under a BSD license of abego Software. (License text)

Sponsor

The development of TreeLayout was generously sponsored by Terence Parr "The ANTLR Guy" (parrt at cs dot usfca dot edu).

References

[1] Walker JQ II. A node-positioning algorithm for general trees. Software— Practice and Experience 1990; 20(7):685-705.
[2] Buchheim C, Jiinger M, Leipert S. Drawing rooted trees in linear time. Software— Practice and Experience 2006; 36(6):651-665

[3] Reingold EM, Tilford JS. Tidier drawings of trees. IEEE Transactions on Software Engineering 1981; 7(2):223-228.

